Analytical Transient Circuit Analysis Summary

First-Order

1. RL circuits can be described by first-order differential equations of the form

$$
\frac{d x(t)}{d t}+\frac{1}{\tau} x(t)=f(t)
$$

where $x(t)$ is some voltage or current in the circuit, and the time constant is $\tau=\frac{L}{R}$.

- If the circuit has no sources, then $f(t)=0$, and

$$
x(t)=A e^{-t / \tau} \text { for } t \geq 0
$$

where $A=x(0)$.

- If the circuit contains DC sources, then $f(t)=\frac{\lambda}{\tau}$ (a constant), and

$$
x(t)=A e^{-t / \tau}+B \text { for } t \geq 0
$$

where $A=x(0)-\lambda$ and $B=\lambda$. Note also that $\lambda=x(\infty)$.
2. RC circuits can also be described by first-order differential equations of the form

$$
\frac{d x(t)}{d t}+\frac{1}{\tau} x(t)=f(t)
$$

where $x(t)$ is a voltage or current in the circuit, but the time constant is now $\tau=R C$.

- If the circuit has no sources, then $f(t)=0$, and

$$
x(t)=A e^{-t / \tau} \quad \text { for } t \geq 0
$$

where $A=x(0)$.

- If the circuit contains DC sources, then $f(t)=\frac{\lambda}{\tau}$ (a constant), and

$$
x(t)=A e^{-t / \tau}+B \quad \text { for } t \geq 0
$$

where $A=x(0)-\lambda$ and $B=\lambda$. Here again, $\lambda=x(\infty)$.

Second-Order

RLC circuits can be described by second-order differential equations of the form

$$
\frac{d^{2} x(t)}{d t^{2}}+2 \zeta \omega_{n} \frac{d x(t)}{d t}+\omega_{n}^{2} x(t)=f(t)
$$

and a characteristic equation of the form

$$
r^{2}+2 \zeta \omega_{n} r+\omega_{n}^{2}=0
$$

- If the circuit has no sources, then $f(t)=0$. There are four distinctly different forms possible for the solution, $x(t)$:
- If $\zeta>1$, the circuit is said to be overdamped, and the characteristic equation has two distinct negative real roots, $r_{1}=\left(-\zeta+\sqrt{\zeta^{2}-1}\right) \omega_{n}$ and $r_{2}=\left(-\zeta-\sqrt{\zeta^{2}-1}\right) \omega_{n}$. The corresponding solution is then

$$
x(t)=A e^{r_{t} t}+B e^{r_{2} t}
$$

where $A=\frac{r_{2} x(0)-\dot{x}(0)}{r_{2}-r_{1}}$ and $B=\frac{\dot{x}(0)-r_{1} x(0)}{r_{2}-r_{1}}$.

- If $\zeta=1$, the circuit is said to be critically damped, and the characteristic equation has two identical negative real roots, $r_{1}=r_{2}=-\omega_{n}$. The corresponding solution is then

$$
x(t)=(A+B t) e^{-\omega_{n} t}
$$

where $A=x(0)$ and $B=\dot{x}(0)+\omega_{n} x(0)$.

- If $1>\zeta>0$, the circuit is said to be underdamped, and the characteristic equation has two complex conjugate roots, $r_{1}=-\zeta \omega_{n}+j \omega_{d}$ and $r_{2}=-\zeta \omega_{n}-j \omega_{d}$, where $\omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}}$. The corresponding solution is then

$$
x(t)=e^{-\zeta \omega_{n} t}\left(A \cos \omega_{d} t+B \sin \omega_{d} t\right)
$$

where $A=x(0)$ and $B=\frac{\dot{x}(0)+\zeta \omega_{n}[x(0)-\lambda]}{\omega_{d}}$.

- If $\zeta=0$, the circuit is said to be undamped, and the characteristic equation has two conjugate imaginary roots, $r_{1}=j \omega_{n}$ and $r_{2}=-j \omega_{n}$. The corresponding solution is then

$$
x(t)=A \cos \omega_{n} t+B \sin \omega_{n} t
$$

where $A=x(0)$ and $B=\frac{\dot{x}(0)}{\omega_{n}}$.

- If the circuit contains DC sources, then $f(t)=\lambda \omega_{n}^{2}$ (a constant). There are again four distinctly different forms possible for the solution, $x(t)$.
- If $\zeta>1$, the circuit is said to be overdamped, and, as before, the characteristic equation has two distinct negative real roots, $r_{1}=\left(-\zeta+\sqrt{\zeta^{2}-1}\right) \omega_{n}$ and $r_{2}=\left(-\zeta-\sqrt{\zeta^{2}-1}\right) \omega_{n}$. However, the corresponding solution is now

$$
x(t)=A e^{\gamma_{1} t}+B e^{r_{2} t}+\lambda
$$

where $A=\frac{r_{2}[x(0)-\lambda]-\dot{x}(0)}{r_{2}-r_{1}}$ and $B=\frac{\dot{x}(0)-r_{1}[x(0)-\lambda]}{r_{2}-r_{1}}$. Note also that $\lambda=x(\infty)$.

- If $\zeta=1$, the circuit is said to be critically damped, and, as before, the characteristic equation has two identical negative real roots, $r_{1}=r_{2}=-\omega_{n}$. The corresponding solution is now

$$
x(t)=(A+B t) e^{-\omega_{n} t}+\lambda
$$

where $A=x(0)-\lambda$ and $B=\dot{x}(0)+\omega_{n}[x(0)-\lambda]$. Here again, $\lambda=x(\infty)$.

- If $1>\zeta>0$, the circuit is said to be underdamped, and, as before, the characteristic equation has two complex conjugate roots, $r_{1}=-\zeta \omega_{n}+j \omega_{d}$ and $r_{2}=-\zeta \omega_{n}-j \omega_{d}$, where $\omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}}$. The corresponding solution is now

$$
x(t)=e^{-\zeta \omega_{n} t}\left(A \cos \omega_{d} t+B \sin \omega_{d} t\right)+\lambda
$$

where $A=x(0)-\lambda$ and $B=\frac{\dot{x}(0)+\zeta \omega_{n} x(0)}{\omega_{d}}$. Once more, $\lambda=x(\infty)$.

- If $\zeta=0$, the circuit is said to be undamped, and, as before, the characteristic equation has two conjugate imaginary roots, $r_{1}=j \omega_{n}$ and $r_{2}=-j \omega_{n}$. The corresponding solution is now

$$
x(t)=A \cos \omega_{n} t+B \sin \omega_{n} t+\lambda
$$

where $A=x(0)-\lambda$ and $B=\frac{\dot{x}(0)}{\omega_{n}}$.

